# Question-1

**How will you describe the position of a table lamp on your study table to another person?**

**Solution:**

To describe the position of the table lamp, we require distance of the table lamp from bottom edge as well as left perpendicular edge of the table.

# Question-2

**(street plan) : A city has two main roads which cross each other at the center of the city. These two roads are along the North- south direction and East- west direction. All the other streets of the city run parallel to these roads and are 200-m apart. There are about 5 streets in aech direction. Using 1cm = 200 m, draw a model of the city on your notebook. Represent the roads/streets by single lines.**

These are many cross-streets in your model. A particular cross â€“ street is made by two streets, one running in the North- south direction and another in the East-west direction. Each cross street is referred to in the following manner: If the 2

(i) how many cross â€“ streets can be referred t0 as (4, 3).

(ii) How many cross â€“ streets can be referred to as (3, 4).

These are many cross-streets in your model. A particular cross â€“ street is made by two streets, one running in the North- south direction and another in the East-west direction. Each cross street is referred to in the following manner: If the 2

^{nd}street running in the North â€“ South direction and 5^{th}in the East â€“ West direction meet at some crossing, then we will call this cross â€“ Street (2, 5). Using this convention, find:(i) how many cross â€“ streets can be referred t0 as (4, 3).

(ii) How many cross â€“ streets can be referred to as (3, 4).

**Solution:**

(i) Only two (4

^{th}street running in the North-South direction and 3

^{rd}street running in the East-West direction).

(ii)

*Only two (3*

^{rd}street running in the North-South direction and 4

^{th}street running in the East-West direction).

# Question-3

**Write the answer of each of the following questions:**

(i) What is the name of horizontal and the vertical lines drawn to determine the position of any point in the Cartesian plane?

(ii) What is the name of each part of the plane formed by these two lines? Write the name of the point where these two lines intersect.

(i) What is the name of horizontal and the vertical lines drawn to determine the position of any point in the Cartesian plane?

(ii) What is the name of each part of the plane formed by these two lines? Write the name of the point where these two lines intersect.

**Solution:**

(i) The x â€“ axis and the y - axis

(ii) quadrants, origin.

# Question-4

**See fig , and write the following:**

(i) The coordinates of B.

(ii) The coordinates of C.

(iii) The point identified by the coordinates (-3, -5).

(iv) The point identified by the coordinates (2, -4).

(v) The abscissa of the point D.

(vi) The ordinate of the point H.

(vii) The coordinates of the point L.

(viii) The coordinates of the point M.

(i) The coordinates of B.

(ii) The coordinates of C.

(iii) The point identified by the coordinates (-3, -5).

(iv) The point identified by the coordinates (2, -4).

(v) The abscissa of the point D.

(vi) The ordinate of the point H.

(vii) The coordinates of the point L.

(viii) The coordinates of the point M.

**Solution:**

(i) B â†’ (-5, 2)

(ii) C â†’ (5, -5)

(iii) E

(iv) G

(v) 6

(vi) â€“3

(vii) L â†’ (0, 5)

(viii) M â†’ (-3, 0)

# Question-5

**In Which quadrant or on which axis do each of the points (-2, 4) , (3, -1), (-1, 0), (1, 2) and (-3, -5) lie? Verify your answer by locating them on the Cartesian plane.**

**Solution:**

The point (-2, 4) lies in the II quadrant.

The point (3, -1) lies in the IV quadrant.

The point (-1, 0) lies on the negative x-axis.

The point (1, 2) lies in the quadrant I

The point (-3, -5) lies in the quadrant III

# Question-6

**Plot the points (x, y) given in the following table on the plane, choosing suitable units of distance on the axes.**

**Solution:**