# Summary

- The binomial expansion of is given by
- The general term in the expansion of
- The expansion of
- The expansion of
- The middle term in the expansion of term if
*n*is even and and term if*n*is odd - The binomial coefficients of are such that the binomial coefficient of 1
^{st}term = that of the (*n*+1)^{th}term (last term), the binomial coefficient of the 2^{nd}term = that of the n^{th}term and so on - Sum of binomial coefficients in
- Sum of alternate binomial coefficients in
- The constant term in the expansion of is the term without the variables
- will have the same coefficients & terms in its expansion as with the alternate sings becoming negative (even terms are negative)