Coupon Accepted Successfully!




Ethernet is the most popular physical layer LAN technology in use today. Other LAN types include Token Ring, Fast Ethernet, Fiber Distributed Data Interface (FDDI), Asynchronous Transfer Mode (ATM) and LocalTalk. Ethernet is popular because it strikes a good balance between speed, cost and ease of installation. These benefits, combined with wide acceptance in the computer marketplace and the ability to support virtually all popular network protocols, make Ethernet an ideal networking technology for most computer users today.

Ethernet Network Architecture

The Institute for Electrical and Electronic Engineers (IEEE) defines the Ethernet standard as IEEE Standard 802.3. This standard defines rules for configuring an Ethernet network as well as specifying how elements in an Ethernet network interact with one another. By adhering to the IEEE standard, network equipment and network protocols can communicate efficiently.


Fast Ethernet

For Ethernet networks that need higher transmission speeds, the Fast Ethernet standard (IEEE 802.3u) has been established. This standard raises the Ethernet speed limit from 10 Megabits per second (Mbps) to 100 Mbps with only minimal changes to the existing cable structure. There are three types of Fast Ethernet: 100BASE-TX for use with level 5 UTP cable, 100BASE-FX for use with fiber-optic cable, and 100BASE-T4 which utilizes an extra two wires for use with level 3 UTP cable. The 100BASE-TX standard has become the most popular due to its close compatibility with the 10BASE-T Ethernet standard. For the network manager, the incorporation of Fast Ethernet into an existing configuration presents a host of decisions. Managers must determine the number of users in each site on the network that need the higher throughput, decide which segments of the backbone need to be reconfigured specifically for 100BASE-T and then choose the necessary hardware to connect the 100BASE-T segments with existing 10BASE-T segments. Gigabit Ethernet is a future technology that promises a migration path beyond Fast Ethernet so the next generation of networks will support even higher data transfer speeds.

Token Ring


Token Ring Architecture

Token Ring is another form of network configuration which differs from Ethernet in that all messages are transferred in a unidirectional manner along the ring at all times. Data is transmitted in tokens, which are passed along the ring and viewed by each device. When a device sees a message addressed to it, that device copies the message and then marks that message as being read. As the message makes its way along the ring, it eventually gets back to the sender who now notes that the message was received by the intended device. The sender can then remove the message and free that token for use by others.

Various PC vendors have been proponents of Token Ring networks at different times and thus these types of networks have been implemented in many organizations.



FDDI architecture

FDDI (Fiber-Distributed Data Interface) is a standard for data transmission on fiber optic lines in a local area network that can extend in range up to 200 km (124 miles). The FDDI protocol is based on the token ring protocol. In addition to being large geographically, an FDDI local area network can support thousands of users.


Test Your Skills Now!
Take a Quiz now
Reviewer Name