Loading....
Coupon Accepted Successfully!

 

Integration by Parts

Theorem: If u and v are two functions of x, then 92479.png = u92471.png92465.png dx.

 

Notes:
In applying the above rule, care has to be taken in the selection of the first function (u) and the selection of second function (v). Normally we use the following methods:
  • If in the product of the two functions, one of the functions is not directly integrable (e.g., log |x|, sin–1x, cos–1x, tan–1x, …, etc.), Then we take it as the first function and the remaining, function is taken as the second function. For example, in the integration of 93971.pngx dx, tan–1x is taken as the first function and x as the second function.
  • If there is no other function then unity is taken as the second function. For example, in the integration of 93194.png, tan–1 x is taken as the first function and 1 as the second function.
  • If both of the functions are directly integrable then the first function is chosen in such a way that the derivative of the function thus obtained under integral sign is easily integrable.
     
    Usually we use the following preference order for the first function (inverse, logarithmic, algebraic, trigonometric, exponent).
     
    In the above stated order, the function on the left is always chosen as the first function. This rule is called as ILATE.




Test Your Skills Now!
Take a Quiz now
Reviewer Name