Previous Year Paper
CAT2005Previous Years Paper
Let g(x) be a function such that g(x+1)+g(x − 1) = g(x) for every real x. Then for what value of p is the relation g(x + p) = g(x) necessarily true for every real x?
A  3 
B  3 
C  2 
D  6

g(x + 1) + g(x − 1) = g(x)
g(x + 2) + g(x) = g(x + 1)
Adding these two equations we get
g(x + 2) + g(x − 1) = 0
⇒ g(x + 3) + g(x) = 0
⇒ g(x + 4) + g(x + 1) = 0
⇒ g(x + 5) + g(x + 2) = 0
⇒ g(x + 6) + g(x + 3) = 0
⇒ g(x + 6) – g(x) = 0
CAT2005Previous Years Paper Flashcard List
1) 
2) 
3) 
4) 
5) 
6) 
7) 
8) 
9) 
10) 
11) 
12) 
13) 
14) 
15) 
16) 
17) 
18) 
19) 
20) 
21) 
22) 
23) 
24) 
25) 
26) 
27) 
28) 
29) 
30) 