Coupon Accepted Successfully!



Ferrous oxide has a cubic structure, and each edge of the unit cell is 5.0 Å. Assuming the density of the oxide as Description: 25776.png, the number of Fe2+ and Description: 25793.png ions present in each unit cell will be:
  1. four Description: 25801.png and four Description: 25808.png
  2. two Description: 25816.png and four Description: 25824.png
  3. four Description: 25832.png and two Description: 25845.png
  4. three Description: 25855.png and three Description: 25863.png
Solution (A)
Let the units of ferrous oxide in a unit cell be n and molecular weight of ferrous oxide Description: 25871.png.
Weight of n units Description: 25879.png
Volume of one unit = (Length of corner)3
Description: 25897.png
Density Description: 25907.png
Description: 25916.png
Description: 25924.png


In a solid AB having the Description: 25933.png structure, A atoms occupy the corners of the cubic unit cell. If all the face-centered atoms along one of the axes are removed, then the resultant stoichiometry of the solid is:
  1. Description: 25943.png
  2. Description: 25952.png
  3. Description: 25960.png
  4. Description: 25969.png
Solution (D)
There are 6 A atoms on the face centers. Removing face-centered atoms along one of the axes means removal of 2 A atoms. Now,
Number of A atoms per unit cell Description: 25981.png
Number of B atoms per unit cell Description: 25990.png + Description: 25998.png
Hence, the resultant stoichiometry is Description: 26006.png.


The edge length of face centered unit cubic cell is Description: 26014.png If the radius of the cation is Description: 26022.png the radius of the anion is:
  1. Description: 26032.png
  2. Description: 26041.png
  3. Description: 26050.png
  4. Description: 26057.png
Solution (C)
Distance between centers of cation and anion Description: 26065.png
Description: 26077.png or Description: 26086.png or Description: 26094.png


The number of atoms in 100 g of an fcc crystal with density Description: 26120.png and cell edge equal to Description: 26128.png is equal to:
  1. Description: 26137.png
  2. Description: 26146.png
  3. Description: 26153.png
  4. Description: 26166.png
Solution (A)
Description: 26175.png
Description: 26184.png
Number of atoms in 100 g Description: 26192.pngDescription: 26199.png


The number of unit cells in 58.5 g of Description: 26219.png is nearly:
  1. Description: 26227.png
  2. Description: 26236.png
  3. Description: 26245.png
  4. Description: 26252.png
Solution (C)
Description: 26262.pngDescription: 26270.png
One unit cell contains Description: 26280.png units. Hence,
Number of unit cell present Description: 26288.pngDescription: 26295.png

Test Your Skills Now!
Take a Quiz now
Reviewer Name